A Novel Condition Monitoring Method of Wind Turbines Based on Long Short-Term Memory Neural Network

Effective intelligent condition monitoring, as an effective technique to enhance the reliability of wind turbines and implement cost-effective maintenance, has been the object of extensive research and development to improve defect detection from supervisory control and data acquisition (SCADA) data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2019-09, Vol.12 (18), p.3411
Hauptverfasser: Qian, Peng, Tian, Xiange, Kanfoud, Jamil, Lee, Joash, Gan, Tat-Hean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effective intelligent condition monitoring, as an effective technique to enhance the reliability of wind turbines and implement cost-effective maintenance, has been the object of extensive research and development to improve defect detection from supervisory control and data acquisition (SCADA) data, relying on perspective signal processing and statistical algorithms. The development of sophisticated machine learning now allows improvements in defect detection from historic data. This paper proposes a novel condition monitoring method for wind turbines based on Long Short-Term Memory (LSTM) algorithms. LSTM algorithms have the capability of capturing long-term dependencies hidden within a sequence of measurements, which can be exploited to increase the prediction accuracy. LSTM algorithms are therefore suitable for application in many diverse fields. The residual signal obtained by comparing the predicted values from a prediction model and the actual measurements from SCADA data can be used for condition monitoring. The effectiveness of the proposed method is validated in the case study. The proposed method can increase the economic benefits and reliability of wind farms.
ISSN:1996-1073
1996-1073
DOI:10.3390/en12183411