A Comparison Study between Wood Flour and Its Derived Biochar for the Enhancement of the Peroxydisulfate Activation Capability of Fe3O4
In this study, both wood flour (WF) and wood flour-derived biochar (WFB) were used as supports for Fe3O4 to activate peroxydisulfate (PDS). The role of different carriers was investigated emphatically from the aspects of catalyst properties, the degradation kinetics of bisphenol A (BPA), the effects...
Gespeichert in:
Veröffentlicht in: | Catalysts 2023-02, Vol.13 (2), p.323 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, both wood flour (WF) and wood flour-derived biochar (WFB) were used as supports for Fe3O4 to activate peroxydisulfate (PDS). The role of different carriers was investigated emphatically from the aspects of catalyst properties, the degradation kinetics of bisphenol A (BPA), the effects of important parameters, and the generation of reactive oxygen species (ROS). Results showed that both WF and WFB could serve as good support for Fe3O4, which could control the release of iron into solution and increase the specific surface areas (SSAs). The WFB/Fe3O4 had stronger PDS activation capability than WF/Fe3O4 mainly due to the larger SSA of WFB/Fe3O4 and the PDS activation ability of WFB. Both radical species (•OH and SO4•−) and non-radical pathways, including 1O2 and high-valent iron-oxo species, contributed to the degradation of BPA in the WFB/Fe3O4–PDS process. Moreover, the WFB/Fe3O4 catalyst also showed stronger ability to control the iron release, better reusability, and higher BPA mineralization efficiency than WF/Fe3O4. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal13020323 |