Verification and Accuracy Analysis of Single-Frequency Occultation Processing Based on the BeiDou Navigation System

GNSS single-frequency occultation processing technology has the advantage of simple instrumentation, but it is not clear about the accuracy of the Beidou-based single-frequency occultation processing. This paper verifies the single-frequency occultation processing algorithm of the BeiDou navigation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2023-04, Vol.14 (4), p.742
Hauptverfasser: Li, Ruimin, Du, Qifei, Yang, Ming, Tian, Haoran, Sun, Yueqiang, Meng, Xiangguang, Bai, Weihua, Wang, Xianyi, Tan, Guangyuan, Hu, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:GNSS single-frequency occultation processing technology has the advantage of simple instrumentation, but it is not clear about the accuracy of the Beidou-based single-frequency occultation processing. This paper verifies the single-frequency occultation processing algorithm of the BeiDou navigation system (BDS) and analyzes its accuracy based on occultation observation data from the FY3E satellite. The research aimed to verify the single-frequency ionospheric relative total electron content (relTEC), analyze the accuracy of the reconstructed second frequency B3∗’s excess phase Doppler, and analyze the accuracy of the refractive index products. Results: (1) As for relTEC and excess phase Doppler, the correlation coefficient between single-frequency occultation processing and dual-frequency occultation processing is greater than 0.95. (2) The relative average deviations of the excess phase Doppler of B3∗ are mostly less than 0.2%, and the relative standard deviations are mostly around 0.5%. (3) The bias index and root mean square index of single/dual-frequency inversion have good consistency compared with ERA5 data. All the results show that the single- and dual-frequency inversion refractive index products have comparable accuracies, and the accuracy of the standard deviation of single-frequency inversion refractive index products over 25 km being slightly lower than that of dual-frequency inversion refractive index products.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos14040742