Spatial Prediction of Wildfire Susceptibility Using Hybrid Machine Learning Models Based on Support Vector Regression in Sydney, Australia

Australia has suffered devastating wildfires recently, and is predisposed to them due to several factors, including topography, meteorology, vegetation, and ignition sources. This study utilized a geographic information system (GIS) technique to analyze and understand the factors that regulate the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2023-02, Vol.15 (3), p.760
Hauptverfasser: Nur, Arip, Kim, Yong, Lee, Joon, Lee, Chang-Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Australia has suffered devastating wildfires recently, and is predisposed to them due to several factors, including topography, meteorology, vegetation, and ignition sources. This study utilized a geographic information system (GIS) technique to analyze and understand the factors that regulate the spatial distribution of wildfire incidents and machine learning to predict wildfire susceptibility in Sydney. Wildfire inventory data were constructed by combining the fire perimeter through field surveys and fire occurrence data gathered from the visible infrared imaging radiometer suite (VIIRS)-Suomi thermal anomalies product between 2011 and 2020 for the Sydney area. Sixteen wildfire-related factors were acquired to assess the potential of machine learning based on support vector regression (SVR) and various metaheuristic approaches (GWO and PSO) for wildfire susceptibility mapping in Sydney. In addition, the 2019–2020 “Black Summer” fire acted as a validation dataset to assess the predictive capability of the developed model. Furthermore, the information gain ratio (IGR) method showed that driving factors such as land use, forest type, and slope degree have a large impact on wildfire susceptibility in the study area, and the frequency ratio (FR) method represented how the factors influence wildfire occurrence. Model evaluation based on area under the curve (AUC) and root average square error (RMSE) were used, and the outputs showed that the hybrid-based SVR-PSO (AUC = 0.882, RMSE = 0.006) model performed better than the standalone SVR (AUC = 0.837, RMSE = 0.097) and SVR-GWO (AUC = 0.873, RMSE = 0.080) models. Thus, optimizing SVR with metaheuristics improved the accuracy of wildfire susceptibility modeling in the study area. The proposed framework can be an alternative to the modeling approach and can be adapted for any research related to the susceptibility of different disturbances.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15030760