Numerical Investigations on the Jet Dynamics during Cavitation Bubble Collapsing between Dual Particles

The jet dynamics during cavitation bubble collapsing between unequal-sized dual particles are investigated utilizing a numerical model that combines the finite volume approach alongside the volume of fluid approach. The model incorporates the compressibility of the two-phase fluid and accounts for m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2024-05, Vol.16 (5), p.535
Hauptverfasser: Wang, Zhifeng, Feng, Zhengyang, Hu, Jinsen, Zhang, Yuning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The jet dynamics during cavitation bubble collapsing between unequal-sized dual particles are investigated utilizing a numerical model that combines the finite volume approach alongside the volume of fluid approach. The model incorporates the compressibility of the two-phase fluid and accounts for mass and heat transfer between two phases. The computational model utilizes an axisymmetric model, where the axis of symmetry is defined as the line that connects the centers of the particles and the bubble. A comprehensive analysis is presented on the influence of the particle radius and bubble–particle distance on the jet behavior. Furthermore, the variations of surface pressure on the particles induced by jet impingement are quantitatively analyzed. Four distinct jet behaviors are categorized, depending on the formation mechanism, as well as the number and the direction of the jets. For case 1, the bubble produces a single jet directed toward a small particle; for case 2, the bubble fragments produces double jets receding from each other; for case 3, the bubble produces double jets approaching each other; and for case 4, the bubble produces a single jet directed toward a large particle. The pressure perturbations induced by jet impingement upon the particles exceed those caused by shock wave impacts. The larger the bubble volume at the moment of jet formation, the longer the duration of the pressure variation caused by the jet impinging on the particles.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym16050535