Bulk RNA sequencing analysis of developing human induced pluripotent cell-derived retinal organoids
Retinogenesis involves the transformation of the anterior developing brain into organized retinal lamellae coordinated by intricate gene signalling networks. This complex process has been investigated in several model organisms such as birds, fish, mammals and amphibians, yet many facets of retinal...
Gespeichert in:
Veröffentlicht in: | Scientific data 2022-12, Vol.9 (1), p.759-8, Article 759 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Retinogenesis involves the transformation of the anterior developing brain into organized retinal lamellae coordinated by intricate gene signalling networks. This complex process has been investigated in several model organisms such as birds, fish, mammals and amphibians, yet many facets of retinal development are different in humans and remain unexplored. In this regard, human pluripotent stem cell (hPSC)-derived 3D retinal organoids and Next Generation Sequencing (NGS) have emerged as key technologies that have facilitated the discovery of previously unknown details about cell fate specification and gene regulation in the retina. Here we utilized hPSCs integrated with fluorescent reporter genes (SIX6-p2A-eGFP/CRX-p2A-h2b-mRuby3) to generate retinal organoids and carry out bulk RNA sequencing of samples encompassing the majority of retinogenesis (D0-D280). This data set will serve as a valuable reference for the vision research community to characterize differentially expressed genes in the developing human eye.
Measurement(s)
mRNA Sequencing
Technology Type(s)
Next Generation Sequencing
Factor Type(s)
Tissue Source • Tissue Type
Sample Characteristic - Organism
Homo sapiens
Sample Characteristic - Environment
cell culture |
---|---|
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/s41597-022-01853-x |