Hydrology under change: long-term annual and seasonal changes in small agricultural catchments in Norway

In agricultural catchments, hydrological processes are highly linked to particle and nutrient loss and can lead to a degradation of the ecological status of the water. Global warming and land use changes influence the hydrological regime. This effect is especially strong in cold regions. In this stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrology Research 2021-12, Vol.52 (6), p.1542-1558
Hauptverfasser: Wenng, Hannah, Croghan, Danny, Bechmann, Marianne, Marttila, Hannu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In agricultural catchments, hydrological processes are highly linked to particle and nutrient loss and can lead to a degradation of the ecological status of the water. Global warming and land use changes influence the hydrological regime. This effect is especially strong in cold regions. In this study, we used long-term hydrological monitoring data (22–26 years) from small agricultural catchments in Norway. We applied a Mann–Kendall trend and wavelet coherence analysis to detect annual and seasonal changes and to evaluate the coupling between runoff, climate, and water sources. The trend analysis showed a significant increase in the annual and seasonal mean air temperature. In all sites, hydrological changes were more difficult to detect. Discharge increased in autumn and winter, but this trend did not hold for all catchments. We found a strong coherence between discharge and precipitation, between discharge and snow water equivalent and discharge and soil water storage capacity. We detected different hydrological regimes of rain and snow-dominated catchments. The catchments responded differently to changes due to their location and inherent characteristics. Our results highlight the importance of studying local annual and seasonal changes in hydrological regimes to understand the effect of climate and the importance for site-specific management plans.
ISSN:0029-1277
1998-9563
2224-7955
DOI:10.2166/nh.2021.066