Vision-Based Three-Dimensional Reconstruction and Monitoring of Large-Scale Steel Tubular Structures

A four-ocular vision system is proposed for the three-dimensional (3D) reconstruction of large-scale concrete-filled steel tube (CFST) under complex testing conditions. These measurements are vitally important for evaluating the seismic performance and 3D deformation of large-scale specimens. A four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in civil engineering 2020, Vol.2020 (2020), p.1-17
Hauptverfasser: Li, Lijuan, Huang, Kuangyu, Huang, Xueyu, Lin, Yunfan, Chen, Mingyou, Tang, Yunchao, He, Yuxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A four-ocular vision system is proposed for the three-dimensional (3D) reconstruction of large-scale concrete-filled steel tube (CFST) under complex testing conditions. These measurements are vitally important for evaluating the seismic performance and 3D deformation of large-scale specimens. A four-ocular vision system is constructed to sample the large-scale CFST; then point cloud acquisition, point cloud filtering, and point cloud stitching algorithms are applied to obtain a 3D point cloud of the specimen surface. A point cloud correction algorithm based on geometric features and a deep learning algorithm are utilized, respectively, to correct the coordinates of the stitched point cloud. This enhances the vision measurement accuracy in complex environments and therefore yields a higher-accuracy 3D model for the purposes of real-time complex surface monitoring. The performance indicators of the two algorithms are evaluated on actual tasks. The cross-sectional diameters at specific heights in the reconstructed models are calculated and compared against laser rangefinder data to test the performance of the proposed algorithms. A visual tracking test on a CFST under cyclic loading shows that the reconstructed output well reflects the complex 3D surface after correction and meets the requirements for dynamic monitoring. The proposed methodology is applicable to complex environments featuring dynamic movement, mechanical vibration, and continuously changing features.
ISSN:1687-8086
1687-8094
DOI:10.1155/2020/1236021