A Novel Method for Extracting DBH and Crown Base Height in Forests Using Small Motion Clips

The diameter at breast height (DBH) and crown base height (CBH) are important indicators in forest surveys. To enhance the accuracy and convenience of DBH and CBH extraction for standing trees, a method based on understory small motion clips (a series of images captured with slight viewpoint changes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2024-09, Vol.15 (9), p.1635
Hauptverfasser: Yang, Shuhang, Xing, Yanqiu, Yin, Boqing, Wang, Dejun, Chang, Xiaoqing, Wang, Jiaqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The diameter at breast height (DBH) and crown base height (CBH) are important indicators in forest surveys. To enhance the accuracy and convenience of DBH and CBH extraction for standing trees, a method based on understory small motion clips (a series of images captured with slight viewpoint changes) has been proposed. Histogram equalization and quadtree uniformization algorithms are employed to extract image features, improving the consistency of feature extraction. Additionally, the accuracy of depth map construction and point cloud reconstruction is improved by minimizing the variance cost function. Six 20 m × 20 m square sample plots were selected to verify the effectiveness of the method. Depth maps and point clouds of the sample plots were reconstructed from small motion clips, and the DBH and CBH of standing trees were extracted using a pinhole imaging model. The results indicated that the root mean square error (RMSE) for DBH extraction ranged from 0.60 cm to 1.18 cm, with relative errors ranging from 1.81% to 5.42%. Similarly, the RMSE for CBH extraction ranged from 0.08 m to 0.21 m, with relative errors ranging from 1.97% to 5.58%. These results meet the accuracy standards required for forest surveys. The proposed method enhances the efficiency of extracting tree structural parameters in close-range photogrammetry (CRP) for forestry. A rapid and accurate method for DBH and CBH extraction is provided by this method, laying the foundation for subsequent forest resource management and monitoring.
ISSN:1999-4907
1999-4907
DOI:10.3390/f15091635