A Note on Cherry-Picking in Meta-Analyses

We study selection bias in meta-analyses by assuming the presence of researchers (meta-analysts) who intentionally or unintentionally cherry-pick a subset of studies by defining arbitrary inclusion and/or exclusion criteria that will lead to their desired results. When the number of studies is suffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Entropy (Basel, Switzerland) Switzerland), 2023-04, Vol.25 (4), p.691
Hauptverfasser: Yoneoka, Daisuke, Rieck, Bastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study selection bias in meta-analyses by assuming the presence of researchers (meta-analysts) who intentionally or unintentionally cherry-pick a subset of studies by defining arbitrary inclusion and/or exclusion criteria that will lead to their desired results. When the number of studies is sufficiently large, we theoretically show that a meta-analysts might falsely obtain (non)significant overall treatment effects, regardless of the actual effectiveness of a treatment. We analyze all theoretical findings based on extensive simulation experiments and practical clinical examples. Numerical evaluations demonstrate that the standard method for meta-analyses has the potential to be cherry-picked.
ISSN:1099-4300
1099-4300
DOI:10.3390/e25040691