Asymptotic behavior of the unique solution for a fractional Kirchhoff problem with singularity

In this paper, we consider the following fractional Kirchhoff problem with singularity [Please download the PDF to view the mathematical expression], where [(-[DELTA]).sup.s] is the fractional Laplacian with 0 < s < 1, b [greater than or equal to] 0 is a constant and 0 < [gamma] < 1. Und...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2021-01, Vol.6 (7), p.7187-7198
Hauptverfasser: Yu, Shengbin, Chen, Jianqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the following fractional Kirchhoff problem with singularity [Please download the PDF to view the mathematical expression], where [(-[DELTA]).sup.s] is the fractional Laplacian with 0 < s < 1, b [greater than or equal to] 0 is a constant and 0 < [gamma] < 1. Under certain assumptions on V and f, we show the existence and uniqueness of positive solution [u.sub.b] by using variational method. We also give a convergence property of [u.sub.b] as b [right arrow] 0, where b is regarded as a positive parameter. Keywords: fractional Kirchhoff problem; singularity; uniqueness; variational method; asymptotic behavior
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2021421