Asymptotic behavior of the unique solution for a fractional Kirchhoff problem with singularity
In this paper, we consider the following fractional Kirchhoff problem with singularity [Please download the PDF to view the mathematical expression], where [(-[DELTA]).sup.s] is the fractional Laplacian with 0 < s < 1, b [greater than or equal to] 0 is a constant and 0 < [gamma] < 1. Und...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2021-01, Vol.6 (7), p.7187-7198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the following fractional Kirchhoff problem with singularity [Please download the PDF to view the mathematical expression], where [(-[DELTA]).sup.s] is the fractional Laplacian with 0 < s < 1, b [greater than or equal to] 0 is a constant and 0 < [gamma] < 1. Under certain assumptions on V and f, we show the existence and uniqueness of positive solution [u.sub.b] by using variational method. We also give a convergence property of [u.sub.b] as b [right arrow] 0, where b is regarded as a positive parameter. Keywords: fractional Kirchhoff problem; singularity; uniqueness; variational method; asymptotic behavior |
---|---|
ISSN: | 2473-6988 2473-6988 |
DOI: | 10.3934/math.2021421 |