Study on P-AlGaAs/Al/Au Ohmic Contact Characteristics for Improving Optoelectronic Response of Infrared Light-Emitting Device

The Al/Au alloy was investigated to improve the ohmic characteristic and light efficiency of reflective infrared light-emitting diodes (IR-LEDs). The Al/Au alloy, which was fabricated by combining 10% aluminum and 90% gold, led to considerably improved conductivity on the top layer of p-AlGaAs of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Micromachines (Basel) 2023-05, Vol.14 (5), p.1053
Hauptverfasser: Lee, Hyung-Joo, Shim, Jae-Sam, Park, Jin-Young, Kwac, Lee-Ku, Seo, Chang-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Al/Au alloy was investigated to improve the ohmic characteristic and light efficiency of reflective infrared light-emitting diodes (IR-LEDs). The Al/Au alloy, which was fabricated by combining 10% aluminum and 90% gold, led to considerably improved conductivity on the top layer of p-AlGaAs of the reflective IR-LEDs. In the wafer bond process required for fabricating the reflective IR-LED, the Al/Au alloy, which has filled the hole patterns in Si N film, was used for improving the reflectivity of the Ag reflector and was bonded directly to the top layer of p-AlGaAs on the epitaxial wafer. Based on current-voltage measurements, it was found that the Al/Au alloyed material has a distinct ohmic characteristic pertaining to the p-AlGaAs layer compared with those of the Au/Be alloy material. Therefore, the Al/Au alloy may constitute one of the favored approaches for overcoming the insulative reflective structures of reflective IR-LEDs. For a current density of 200 mA, a lower forward voltage (1.56 V) was observed from the wafer bond IR-LED chip made with the Al/Au alloy; this voltage was remarkably lower in value than that of the conventional chip made with the Au/Be metal (2.29 V). A higher output power (182 mW) was observed from the reflective IR-LEDs made with the Al/Au alloy, thus displaying an increase of 64% compared with those made with the Au/Be alloy (111 mW).
ISSN:2072-666X
2072-666X
DOI:10.3390/mi14051053