Application of Transfer Learning and Convolutional Neural Networks for Autonomous Oil Sheen Monitoring

Oil sheen on the water surface can indicate a source of hydrocarbon in underlying subaquatic sediments. Here, we develop and test the accuracy of an algorithm for automated real-time visual monitoring of the water surface for detecting oil sheen. This detection system is part of an automated oil she...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-09, Vol.12 (17), p.8865
Hauptverfasser: Dong, Jialin, Sitler, Katherine, Scalia, Joseph, Ge, Yunhao, Bireta, Paul, Sihota, Natasha, Hoelen, Thomas P., Lowry, Gregory V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oil sheen on the water surface can indicate a source of hydrocarbon in underlying subaquatic sediments. Here, we develop and test the accuracy of an algorithm for automated real-time visual monitoring of the water surface for detecting oil sheen. This detection system is part of an automated oil sheen screening system (OS-SS) that disturbs subaquatic sediments and monitors for the formation of sheen. We first created a new near-surface oil sheen image dataset. We then used this dataset to develop an image-based Oil Sheen Prediction Neural Network (OS-Net), a classification machine learning model based on a convolutional neural network (CNN), to predict the existence of oil sheen on the water surface from images. We explored the effectiveness of different strategies of transfer learning to improve the model accuracy. The performance of OS-Net and the oil detection accuracy reached up to 99% on a test dataset. Because the OS-SS uses video to monitor for sheen, we also created a real-time video-based oil sheen prediction algorithm (VOS-Net) to deploy in the OS-SS to autonomously map the spatial distribution of sheening potential of hydrocarbon-impacted subaquatic sediments.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12178865