Measurement report: quantifying source contribution of fossil fuels and biomass-burning black carbon aerosol in the southeastern margin of the Tibetan Plateau

Anthropogenic emissions of black carbon (BC) aerosol are transported from Southeast Asia to the southwestern Tibetan Plateau (TP) during the pre-monsoon; however, the quantities of BC from different anthropogenic sources and the transport mechanisms are still not well constrained because there have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2021-01, Vol.21 (2), p.973-987
Hauptverfasser: Liu, Huikun, Wang, Qiyuan, Xing, Li, Zhang, Yong, Zhang, Ting, Ran, Weikang, Cao, Junji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Anthropogenic emissions of black carbon (BC) aerosol are transported from Southeast Asia to the southwestern Tibetan Plateau (TP) during the pre-monsoon; however, the quantities of BC from different anthropogenic sources and the transport mechanisms are still not well constrained because there have been no high-time-resolution BC source apportionments. Intensive measurements were taken in a transport channel for pollutants from Southeast Asia to the southeastern margin of the TP during the pre-monsoon to investigate the influences of fossil fuels and biomass burning on BC. A receptor model that coupled multi-wavelength absorption with aerosol species concentrations was used to retrieve site-specific Ångström exponents (AAEs) and mass absorption cross sections (MACs) for BC. An “aethalometer model” that used those values showed that biomass burning had a larger contribution to BC mass than fossil fuels (BCbiomass=57 % versus BCfossil=43 %). The potential source contribution function indicated that BCbiomass was transported to the site from northeastern India and northern Burma. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) indicated that 40 % of BCbiomass originated from Southeast Asia, while the high BCfossil was transported from the southwest of the sampling site. A radiative transfer model indicated that the average atmospheric direct radiative effect (DRE) of BC was +4.6 ± 2.4 W m−2, with +2.5 ± 1.8 W m−2 from BCbiomass and +2.1 ± 0.9 W m−2 from BCfossil. The DRE of BCbiomass and BCfossil produced heating rates of 0.07 ± 0.05 and 0.06 ± 0.02 K d−1, respectively. This study provides insights into sources of BC over a transport channel to the southeastern TP and the influence of the cross-border transportation of biomass-burning emissions from Southeast Asia during the pre-monsoon.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-21-973-2021