Speckle Vibrometry for Contactless Instantaneous Heart Rate and Respiration Rate Monitoring on Mechanically Ventilated Patients

: Contactless monitoring of instantaneous heart rate and respiration rate has a significant clinical relevance. This work aims to use Speckle Vibrometry (i.e., based on the secondary laser speckle effect) to contactlessly measure these two vital signs in an intensive care unit. : In this work, we pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-10, Vol.24 (19), p.6374
Hauptverfasser: Que, Shuhao, Cramer, Iris, Dekker, Lukas, Overeem, Sebastiaan, Bouwman, Arthur, Zinger, Svitlana, Stuijk, Sander, van Meulen, Fokke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:: Contactless monitoring of instantaneous heart rate and respiration rate has a significant clinical relevance. This work aims to use Speckle Vibrometry (i.e., based on the secondary laser speckle effect) to contactlessly measure these two vital signs in an intensive care unit. : In this work, we propose an algorithm for the estimation of instantaneous heart rate and respiration rate from mechanically ventilated patients. The algorithm uses multiple regions, principal component analysis, and dominant angle analysis. A semi-automated peak detection method is implemented to precisely label the aortic valve opening peak within the cardiac waveform. : Compared with electrocardiography, the present work achieves limits of agreement of [-2.19, 1.73] beats per minute of instantaneous heart rate. The measurement spot is on the chest covered with two to three layers of duvet blankets. Compared with the airway flow signal measured by the mechanical ventilator, the present work achieves limits of agreement of [-0.68, 0.46] respirations per minute of instantaneous respiration rate. : These results showcased Speckle Vibrometry's potential in vital sign monitoring in a clinical setting. : This is the first human clinical study for Speckle Vibrometry.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24196374