Stochastic Evaluation of Cutting Tool Load and Surface Quality during Milling of HPL

The topic of the article concerns the mechanics of machining plastics and their machined surface. This article deals with measurements and their stochastic (probabilistic) evaluation of the force and moment loading of the machine tools and workpiece. It also deals with the quality of the machined su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-12, Vol.12 (24), p.12523
Hauptverfasser: Frydrýšek, Karel, Skoupý, Ondřej, Mrkvica, Ivan, Slaninková, Aneta, Kratochvíl, Jiří, Jurga, Tibor, Vlk, Miroslav, Krpec, Pavel, Madeja, Roman, Havlíček, Miroslav, Stančeková, Dana, Pometlová, Jana, Hlinka, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The topic of the article concerns the mechanics of machining plastics and their machined surface. This article deals with measurements and their stochastic (probabilistic) evaluation of the force and moment loading of the machine tools and workpiece. It also deals with the quality of the machined surface in relation to its surface roughness and surface integrity. Measurements were made under different cutting conditions on a CNC milling machine using a newly designed cutter with straight teeth. The statistical evaluation is presented by bounded histograms and basic statistical characteristics that give a realistic idea of the machining process. The practical focus of the experiments is on the milling of HPL (high-pressure plastic–laminate composite material). The listed procedures can also be applied to other materials and machining methods, and can be used for numerical modelling, setting the optimum parameters of machining technology, or for the design of cutting tools. Numerical modelling and other solution options are also mentioned. We have not yet found detailed information in the literature about the milling of HPL material, and our results are therefore new and necessary.
ISSN:2076-3417
2076-3417
DOI:10.3390/app122412523