Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising

•We propose a unified deep attentive CNN framework for automatic rs-fMRI denoising.•It simultaneously learns spatio-temporal features of noise in a data-driven manner.•We provide visual explanations to depict how the CNNs work for noise detection.•It achieves high performance on various datasets inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2022-07, Vol.254, p.119127-119127, Article 119127
Hauptverfasser: Heo, Keun-Soo, Shin, Dong-Hee, Hung, Sheng-Che, Lin, Weili, Zhang, Han, Shen, Dinggang, Kam, Tae-Eui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•We propose a unified deep attentive CNN framework for automatic rs-fMRI denoising.•It simultaneously learns spatio-temporal features of noise in a data-driven manner.•We provide visual explanations to depict how the CNNs work for noise detection.•It achieves high performance on various datasets including infant cohorts.•It can be integrated into any pipelines by accelerating speed (
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2022.119127