Deep attentive spatio-temporal feature learning for automatic resting-state fMRI denoising
•We propose a unified deep attentive CNN framework for automatic rs-fMRI denoising.•It simultaneously learns spatio-temporal features of noise in a data-driven manner.•We provide visual explanations to depict how the CNNs work for noise detection.•It achieves high performance on various datasets inc...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2022-07, Vol.254, p.119127-119127, Article 119127 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •We propose a unified deep attentive CNN framework for automatic rs-fMRI denoising.•It simultaneously learns spatio-temporal features of noise in a data-driven manner.•We provide visual explanations to depict how the CNNs work for noise detection.•It achieves high performance on various datasets including infant cohorts.•It can be integrated into any pipelines by accelerating speed ( |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2022.119127 |