Rock mass classification prediction model using heuristic algorithms and support vector machines: a case study of Chambishi copper mine

The rock mass is one of the key parameters in engineering design. Accurate rock mass classification is also essential to ensure operational safety. Over the past decades, various models have been proposed to evaluate and predict rock mass. Among these models, artificial intelligence (AI) based model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2022-01, Vol.12 (1), p.928-928, Article 928
Hauptverfasser: Hu, Jianhua, Zhou, Tan, Ma, Shaowei, Yang, Dongjie, Guo, Mengmeng, Huang, Pengli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The rock mass is one of the key parameters in engineering design. Accurate rock mass classification is also essential to ensure operational safety. Over the past decades, various models have been proposed to evaluate and predict rock mass. Among these models, artificial intelligence (AI) based models are becoming more popular due to their outstanding prediction results and generalization ability for multiinfluential factors. In order to develop an easy-to-use rock mass classification model, support vector machine (SVM) techniques are adopted as the basic prediction tools, and three types of optimization algorithms, i.e., particle swarm optimization (PSO), genetic algorithm (GA) and grey wolf optimization (GWO), are implemented to improve the prediction classification and optimize the hyper-parameters. A database was assembled, consisting of 80 sets of real engineering data, involving four influencing factors. The three combined models are compared in accuracy, precision, recall, F 1 value and computational time. The results reveal that among three models, the GWO-SVC-based model shows the best classification performance by training. The accuracy of training and testing sets of GWO-SVC are 90.6250% (58/64) and 93.7500% (15/16), respectively. For Grades I, II, III, IV and V, the precision value is 1, 0.93, 0.90, 0.92, 0.83, the recall value is 1, 1, 0.93, 0.73, 0.83, and the F 1 value is 1, 0.96, 0.92, 0.81, 0.83, respectively. Sensitivity analysis is performed to understand the influence of input parameters on rock mass classification. It shows that the sensitive factor in rock mass quality is the RQD. Finally, the GWO-SVC is employed to assess the quality of rocks from the southeastern ore body of the Chambishi copper mine. Overall, the current study demonstrates the potential of using artificial intelligence methods in rock mass assessment, rendering far better results than the previous reports.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-022-05027-y