Vacuum-powered soft actuator with oblique air chambers for easy detachment of artificial dry adhesive by coupled contraction and twisting

A gecko foot-inspired, mushroom-shaped artificial dry adhesive exploiting intermolecular forces between microstructure and surface has drawn research attention for its strong adhesive force. However, the high pull-off strength corresponding to the adhesive force matters when detaching fragile substr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science and technology of advanced materials 2023-12, Vol.24 (1), p.2274818-2274818
Hauptverfasser: Yoo, Seung Hoon, Kim, Minsu, Park, Han Jun, Lee, Ga In, Lee, Sung Ho, Kwak, Moon Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A gecko foot-inspired, mushroom-shaped artificial dry adhesive exploiting intermolecular forces between microstructure and surface has drawn research attention for its strong adhesive force. However, the high pull-off strength corresponding to the adhesive force matters when detaching fragile substrates. In this study, we report a vacuum-powered soft actuator having oblique air chambers and a dry adhesive. The soft actuator performs coupled contraction and twisting by applying negative pneumatic pressure inward and exhibits not only high pull-off strength but also easy detachment. This effective detachment can be achieved thanks to the twisting motion of the soft actuator. The detachment performances of the actuator models are assessed using a 6-degrees-of-freedom robot arm. Results show that the soft actuators exhibit remarkable pull-off strength decrement from ~20 N cm−2 to ~2 N cm−2 due to the twisting. Finally, to verify a feasible application of this study, we utilize the inherent compliance of the actuators and introduce a glass transfer system for which a glass substrate on a slope is gripped by the flexibility of the soft actuators and delivered to the destination without any fracture.
ISSN:1468-6996
1878-5514
DOI:10.1080/14686996.2023.2274818