Microsphere-Based Optical Frequency Comb Generator for 200 GHz Spaced WDM Data Transmission System

Optical frequency comb (OFC) generators based on whispering gallery mode (WGM) microresonators have a massive potential to ensure spectral and energy efficiency in wavelength-division multiplexing (WDM) telecommunication systems. The use of silica microspheres for telecommunication applications has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photonics 2020-09, Vol.7 (3), p.72
Hauptverfasser: Anashkina, Elena A., Marisova, Maria P., Andrianov, Alexey V., Akhmedzhanov, Rinat A., Murnieks, Rihards, Tokman, Mikhail D., Skladova, Laura, Oladyshkin, Ivan V., Salgals, Toms, Lyashuk, Ilya, Sorokin, Arseniy, Spolitis, Sandis, Leuchs, Gerd, Bobrovs, Vjaceslavs
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optical frequency comb (OFC) generators based on whispering gallery mode (WGM) microresonators have a massive potential to ensure spectral and energy efficiency in wavelength-division multiplexing (WDM) telecommunication systems. The use of silica microspheres for telecommunication applications has hardly been studied but could be promising. We propose, investigate, and optimize numerically a simple design of a silica microsphere-based OFC generator in the C-band with a free spectral range of 200 GHz and simulate its implementation to provide 4-channel 200 GHz spaced WDM data transmission system. We calculate microsphere characteristics such as WGM eigenfrequencies, dispersion, nonlinear Kerr coefficient with allowance for thermo-optical effects, and simulate OFC generation in the regime of a stable dissipative Kerr soliton. We show that by employing generated OFC lines as optical carriers for WDM data transmission, it is possible to ensure error-free data transmission with a bit error rate (BER) of 4.5 × 10−30, providing a total of 40 Gbit/s of transmission speed on four channels.
ISSN:2304-6732
2304-6732
DOI:10.3390/photonics7030072