Histamine and Tyramine in Chihuahua Cheeses during Shelf Life: Association with the Presence of tdc and hdc Genes

Cheese is a product of animal origin with a high nutritional value, and it is one of the most consumed dairy foods in Mexico. In addition, Chihuahua cheese is the most consumed matured cheese in Mexico. In the production process of Chihuahua cheese, maturation is carried out by adding acid lactic mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-03, Vol.28 (7), p.3007
Hauptverfasser: Campos-Góngora, Eduardo, González-Martínez, María Teresa, López-Hernández, Abad Arturo, Arredondo-Mendoza, Gerardo Ismael, Ortega-Villarreal, Ana Sofía, González-Martínez, Blanca Edelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cheese is a product of animal origin with a high nutritional value, and it is one of the most consumed dairy foods in Mexico. In addition, Chihuahua cheese is the most consumed matured cheese in Mexico. In the production process of Chihuahua cheese, maturation is carried out by adding acid lactic microorganisms, mainly of the genus and, in some cases, also the and genus. As part of the metabolism of fermenting microorganisms, biogenic amines can develop in matured foods, which result from the activity of amino decarboxylase enzymes. In cheeses, histamine and tyramine are the main amines that are formed, and the consumption of these represents a great risk to the health of consumers. In this work, the presence of biogenic amines (histamine and tyramine) was determined by HPLC at different times of the shelf life of Chihuahua cheeses. In addition, the presence of genes hdc and tdc that code for the enzymes responsible for the synthesis of these compounds (histidine and tyrosine decarboxylase, or HDC and TDC) was determined by molecular techniques. A significant correlation was observed between the presence of both histamine and tyramine at the end of shelf life with the presence of genes that code for the enzymes responsible for their synthesis.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28073007