Combined Transcriptomic and Proteomic Profiling of the Mouse Anterior Cingulate Cortex Identifies Potential Therapeutic Targets for Pulpitis-Induced Pain

Pulpitis is a common dental emergency that presents with intense pain; there is still no specific medicine to treat pulpitis-induced pain to date. Herein, differentially expressed genes in mouse anterior cingulate cortex (ACC) were investigated 7 days after pulp exposure via a combination of high-th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS omega 2024-02, Vol.9 (5), p.5972-5984
Hauptverfasser: Kang, Xiaoning, Si, Jialin, Zhang, Jing, Yan, Xia, Yu, Zhuo, Zhang, Yaoyuan, Li, Xinwei, Wu, Li-an
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pulpitis is a common dental emergency that presents with intense pain; there is still no specific medicine to treat pulpitis-induced pain to date. Herein, differentially expressed genes in mouse anterior cingulate cortex (ACC) were investigated 7 days after pulp exposure via a combination of high-throughput transcriptomic and proteomic analyses. We screened 34 key genes associated with 8 critical pathways. Among these, genes (Elovl5, Ikbke, and Nbeal2) involved in immune or inflammatory responses exhibited exclusive regulation at the transcriptomic level, as confirmed by qRT-PCR. We also investigated the comprehensive expression profiles of genes (Erg1, Shank2, Bche, Serinf1, and Pax6) related to synaptic plasticity. Furthermore, the underlying mechanisms for pulpitis-induced pain through immune or inflammatory responses and synaptic plasticity were discussed. Taken together, our findings shed light on the mechanisms underlying pulpitis-induced pain, deepening our understanding of the molecular pathways and providing potential therapeutic and diagnostic targets.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.3c09759