Data-Driven Control Algorithm for Snake Manipulator

In some environments where manual work cannot be carried out, snake manipulators are instead used to improve the level of automatic work and ensure personal safety. However, the structure of the snake manipulator is diverse, which renders it difficult to establish an environmental model of the contr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-09, Vol.11 (17), p.8146
Hauptverfasser: Hu, Kai, Tian, Lang, Weng, Chenghang, Weng, Liguo, Zang, Qiang, Xia, Min, Qin, Guodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In some environments where manual work cannot be carried out, snake manipulators are instead used to improve the level of automatic work and ensure personal safety. However, the structure of the snake manipulator is diverse, which renders it difficult to establish an environmental model of the control system. It is difficult to obtain an ideal control effect by using the traditional manipulator control method. In view of this, this paper proposes a data-driven snake manipulator control algorithm. After collecting data, the algorithm uses the strong learning and decision-making ability of the deep deterministic strategy gradient to learn these system data. A data-driven controller based on the deep deterministic policy gradient was trained in order to solve the manipulator system control problem when the control system environment model is uncertain or even unknown. The data of simulation experiments show that the control algorithm has good stability and accuracy in the case of model uncertainty.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11178146