Effects of intergranular phase on the coercivity for MnBi magnets prepared by spark plasma sintering

MnBi magnets with a high content of low temperature phase (LTP) and excellent magnetic properties were prepared by spark plasma sintering (SPS) using ball milling powders as precursors without magnetic purification. A complicated intergranular phase, which contains Mn phase, Bi phase, MnO phase, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2018-05, Vol.8 (5), p.055132-055132-7
Hauptverfasser: Cao, J., Huang, Y. L., Hou, Y. H., Zhang, G. Q., Shi, Z. Q., Zhong, Z. C., Liu, Z. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MnBi magnets with a high content of low temperature phase (LTP) and excellent magnetic properties were prepared by spark plasma sintering (SPS) using ball milling powders as precursors without magnetic purification. A complicated intergranular phase, which contains Mn phase, Bi phase, MnO phase, and even amorphous phase in MnBi magnets, was characterized and reported systematically. It was found that the formation of intergranular phase which was contributed by ball milling precursors and sintering mechanism, jointly, had important influence on the magnetic properties. The appropriate content of intergranular phase was beneficial in improving the coercivity due to the strong magnetic isolation effects. The optimum magnetic properties with Mr=26.0 emu/g, Hci= 7.11 kOe and (BH)max=1.53 MGOe at room temperature, and a maximum value Hci= 25.37 kOe at 550 K can be obtained. Strongly favorable magnetic properties make SPSed MnBi magnets an attractive candidate material for small permanent magnets used in high-temperature applications.
ISSN:2158-3226
2158-3226
DOI:10.1063/1.5019870