Nu–Gr correlation for laminar natural convection heat transfer from a sphere submitted to a constant heat flux surface

The work numerically investigated laminar natural convection heat transfer from the single sphere with a constant heat flux surface in air over the wide range of Grashof number ( 10 ≤ G r ≤ 10 7 ). The more efficient and precise numerical method based on Bejan et al. was employed here, the accuracy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-07, Vol.14 (1), p.16565-19, Article 16565
Hauptverfasser: Zhen, Qi, Tana, Sun, Yunfeng, Yan, Caixia, Wang, Hongzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The work numerically investigated laminar natural convection heat transfer from the single sphere with a constant heat flux surface in air over the wide range of Grashof number ( 10 ≤ G r ≤ 10 7 ). The more efficient and precise numerical method based on Bejan et al. was employed here, the accuracy of which has been confirmed through validation against a single sphere case. The heat transfer characteristics were systemically analyzed in terms of isothermal contours and streamlines around the sphere, dimensionless temperature and velocity profiles. Additionally, local Nusselt number as well as local pressure and friction drag coefficients were studied with different Grashof number. In comparison to the sphere with uniform heat flux surface, the heat transfer from the isothermal sphere was found to be enhanced attributable to a more robust buoyancy force and a steeper temperature gradient. Moreover, the average Nusselt number for the sphere with a constant heat flux between 60.4 and 98.6% of the isothermal sphere’s value, this range being contingent upon the specific Grashof number. What’s more, the proposed correlation addresses a notable void in the predictive understanding of heat transfer from the sphere with uniform heat flux, which is scenario prevalent in various engineering applications, particularly for the cooling of electrical and nuclear systems, and offer values for academic research.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-67382-2