Prediction of concrete compressive strength due to long term sulfate attack using neural network

This work was divided into two phases. Phase one included the validation of neural network to predict mortar and concrete properties due to sulfate attack. These properties were expansion, weight loss, and compressive strength loss. Assessment of concrete compressive strength up to 200years due to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alexandria engineering journal 2014-09, Vol.53 (3), p.627-642
Hauptverfasser: Diab, Ahmed M., Elyamany, Hafez E., Abd Elmoaty, Abd Elmoaty M., Shalan, Ali H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work was divided into two phases. Phase one included the validation of neural network to predict mortar and concrete properties due to sulfate attack. These properties were expansion, weight loss, and compressive strength loss. Assessment of concrete compressive strength up to 200years due to sulfate attack was considered in phase two. The neural network model showed high validity on predicting compressive strength, expansion and weight loss due to sulfate attack. Design charts were constructed to predict concrete compressive strength loss. The inputs of these charts were cement content, water cement ratio, C3A content, and sulfate concentration. These charts can be used easily to predict the compressive strength loss after any certain age and sulfate concentration for different concrete compositions.
ISSN:1110-0168
DOI:10.1016/j.aej.2014.04.002