Numerical-Experimental characterization of honeycomb sandwich panel and numerical modal analysis of implemented delamination
In this paper, a numerical characterization of aluminum honeycomb sandwich panel and experimental validation are proposed. Firstly, numerical homogenization approach to predict the elastic properties of the core only are performed using initial finite element model of Representative Volume Element (...
Gespeichert in:
Veröffentlicht in: | Frattura ed integritá strutturale 2019-07, Vol.13 (49), p.655-665 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a numerical characterization of aluminum honeycomb sandwich panel and experimental validation are proposed. Firstly, numerical homogenization approach to predict the elastic properties of the core only are performed using initial finite element model of Representative Volume Element (RVE) which does not take into account the double thickness wall existing in aluminum core structure. According to these initial parameters, finite element model of sandwich composite plate is constructed to extract its elasto-dynamic characteristics. In order to validate the numerical achievements, Experimental Modal Analysis of sandwich plate was carried out. Secondly, the double thickness wall is selected to be introduced in the RVE because of important error between results, new comparative study validates the improved elastic parameters and illustrate that the double thickness wall play an important role in the homogenization procedure. Furthermore, the influence of the delamination defect on the vibration behavior of the composite panel is investigated using the validated 3-D finite element model. |
---|---|
ISSN: | 1971-8993 1971-8993 |
DOI: | 10.3221/IGF-ESIS.49.59 |