Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model

HIV-1 infection is a dangerous diseases like Cancer, AIDS, etc. Many mathematical models have been introduced in the literature, which are investigated with different approaches. In this article, we generalize the HIV-1 model through nonsingular fractional operator. The non-integer mathematical mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2022-01, Vol.7 (3), p.4778-4792
Hauptverfasser: Ahmad, Shabir, Ullah, Aman, Partohaghighi, Mohammad, Saifullah, Sayed, Akgül, Ali, Jarad, Fahd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HIV-1 infection is a dangerous diseases like Cancer, AIDS, etc. Many mathematical models have been introduced in the literature, which are investigated with different approaches. In this article, we generalize the HIV-1 model through nonsingular fractional operator. The non-integer mathematical model of HIV-1 infection under the Caputo-Fabrizio derivative is presented in this paper. The concept of Picard-Lindelof and fixed-point theory are used to address the existence of a unique solution to the HIV-1 model under the suggested operator. Also, the stability of the suggested model is proved through the Picard iteration and fixed point theory approach. The model's approximate solution is constructed through three steps Adams-Bashforth numerical method. Numerical simulations are provided for different values of fractional-order to study the complex dynamics of the model. Lastly, we provide the oscillatory and chaotic behavior of the proposed model for various fractional orders.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022265