Sea Ice Deformation Is Not Scale Invariant Over Length Scales Greater Than A Kilometer

In March and April 2021, buoys were deployed in the Beaufort Sea, Arctic Ocean, to measure sea-ice horizontal deformation over spatial scales that had not been previously achieved. Geodetic-quality position measurements allowed measurements of strain-rate over lengths from about 200 m to 2 km. Conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2024-06, Vol.51 (12), p.n/a
Hauptverfasser: Hutchings, Jennifer K., Bliss, Angela C., Mondal, Dhiman, Elosegui, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In March and April 2021, buoys were deployed in the Beaufort Sea, Arctic Ocean, to measure sea-ice horizontal deformation over spatial scales that had not been previously achieved. Geodetic-quality position measurements allowed measurements of strain-rate over lengths from about 200 m to 2 km. Conventional ice-drifters extended spatial coverage up to about 100 km. Past studies find there is multi-fractal behavior for horizontal sea-ice deformation from 10 to 1000 km. Our results demonstrate that such behavior does not hold when including spatial scales below 10 km. We find that sea-ice deformation is not scale in variant between the scale of individual sea-ice floes and aggregates of floes. Therefore, we cannot expect the same physical laws or forcing to describe sea-ice kinematics over these regimes, nor can we assume log-log linear behavior for mean deformation. Using this scaling behavior as a metric to validate models that resolve sea ice floes and their interactions is hence not recommended.
ISSN:0094-8276
1944-8007
DOI:10.1029/2024GL108582