A Novel Bifunctional Self‐Stabilized Strategy Enabling 4.6 V LiCoO2 with Excellent Long‐Term Cyclability and High‐Rate Capability

Although the theoretical specific capacity of LiCoO2 is as high as 274 mAh g−1, the superior electrochemical performances of LiCoO2 can be barely achieved due to the issues of severe structure destruction and LiCoO2/electrolyte interface side reactions when the upper cutoff voltage exceeds 4.5 V. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced science 2019-06, Vol.6 (12), p.1900355-n/a
Hauptverfasser: Wang, Longlong, Ma, Jun, Wang, Chen, Yu, Xinrun, Liu, Ru, Jiang, Feng, Sun, Xingwei, Du, Aobing, Zhou, Xinhong, Cui, Guanglei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although the theoretical specific capacity of LiCoO2 is as high as 274 mAh g−1, the superior electrochemical performances of LiCoO2 can be barely achieved due to the issues of severe structure destruction and LiCoO2/electrolyte interface side reactions when the upper cutoff voltage exceeds 4.5 V. Here, a bifunctional self‐stabilized strategy involving Al+Ti bulk codoping and gradient surface Mg doping is first proposed to synchronously enhance the high‐voltage (4.6 V) performances of LiCoO2. The comodified LiCoO2 (CMLCO) shows an initial discharge capacity of 224.9 mAh g−1 and 78% capacity retention after 200 cycles between 3.0 and 4.6 V. Excitingly, the CMLCO also exhibits a specific capacity of up to 142 mAh g−1 even at 10 C. Moreover, the long‐term cyclability of CMLCO/mesocarbon microbeads full cells is also enhanced significantly even at high temperature of 60 °C. The synergistic effects of this bifunctional self‐stabilized strategy on structural reversibility and interfacial stability are demonstrated by investigating the phase transitions and interface characteristics of cycled LiCoO2. This work will be a milestone breakthrough in the development of high‐voltage LiCoO2. It will also present an instructive contribution for resolving the big structural and interfacial challenges in other high‐energy‐density rechargeable batteries. A bifunctional self‐stabilized strategy involving Al+Ti bulk codoping and gradient surface Mg doping is first proposed to synchronously enhance the high‐voltage (4.6 V) performances of LiCoO2. The comodified LiCoO2 shows excellent long‐term cyclability and high‐rate capability in both half and full cells even at high temperature of 60 °C.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.201900355