Akt inhibitors as an HIV-1 infected macrophage-specific anti-viral therapy
Unlike CD4+ T cells, HIV-1 infected macrophages exhibit extended life span even upon stress, consistent with their in vivo role as long-lived HIV-1 reservoirs. Here, we demonstrate that PI3K/Akt inhibitors, including clinically available Miltefosine, dramatically reduced HIV-1 production from long-l...
Gespeichert in:
Veröffentlicht in: | Retrovirology 2008-01, Vol.5 (1), p.11-11, Article 11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unlike CD4+ T cells, HIV-1 infected macrophages exhibit extended life span even upon stress, consistent with their in vivo role as long-lived HIV-1 reservoirs.
Here, we demonstrate that PI3K/Akt inhibitors, including clinically available Miltefosine, dramatically reduced HIV-1 production from long-living virus-infected macrophages. These PI3K/Akt inhibitors hyper-sensitize infected macrophages to extracellular stresses that they are normally exposed to, and eventually lead to cell death of infected macrophages without harming uninfected cells. Based on the data from these Akt inhibitors, we were able to further investigate how HIV-1 infection utilizes the PI3K/Akt pathway to establish the cytoprotective effect of HIV-1 infection, which extends the lifespan of infected macrophages, a key viral reservoir. First, we found that HIV-1 infection activates the well characterized pro-survival PI3K/Akt pathway in primary human macrophages, as reflected by decreased PTEN protein expression and increased Akt kinase activity. Interestingly, the expression of HIV-1 or SIV Tat is sufficient to mediate this cytoprotective effect, which is dependent on the basic domain of Tat - a region that has previously been shown to bind p53. Next, we observed that this interaction appears to contribute to the downregulation of PTEN expression, since HIV-1 Tat was found to compete with PTEN for p53 binding; this is known to result in p53 destabilization, with a consequent reduction in PTEN protein production.
Since HIV-1 infected macrophages display highly elevated Akt activity, our results collectively show that PI3K/Akt inhibitors may be a novel therapy for interfering with the establishment of long-living HIV-1 infected reservoirs. |
---|---|
ISSN: | 1742-4690 1742-4690 |
DOI: | 10.1186/1742-4690-5-11 |