Finite fractal dimension of pullback attractors for a nonclassical diffusion equation

In this paper, we investigate the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $. First, we prove the existence of pullback attractors for a nonclassical diffusion equation with arbitrary polynomial growth condition by applying the operator...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS Mathematics 2022-01, Vol.7 (5), p.8064-8079
Hauptverfasser: Dong, Xiaolei, Qin, Yuming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $. First, we prove the existence of pullback attractors for a nonclassical diffusion equation with arbitrary polynomial growth condition by applying the operator decomposition method. Then, by the fractal dimension theorem of pullback attractors given by [6 ] , we prove the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2022449