Periodic solutions for functional differential equations with periodic delay close to zero

This paper studies the existence of periodic solutions to the delay differential equation $$ dot{x}(t)=f(x(t-muau(t)),epsilon),. $$ The analysis is based on a perturbation method previously used for retarded differential equations with constant delay. By transforming the studied equation into a pert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2006-11, Vol.2006 (141), p.1-12
Hauptverfasser: My Lhassan Hbid, Redouane Qesmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies the existence of periodic solutions to the delay differential equation $$ dot{x}(t)=f(x(t-muau(t)),epsilon),. $$ The analysis is based on a perturbation method previously used for retarded differential equations with constant delay. By transforming the studied equation into a perturbed non-autonomous ordinary equation and using a bifurcation result and the Poincare procedure for this last equation, we prove the existence of a branch of periodic solutions, for the periodic delay equation, bifurcating from $mu=0$.
ISSN:1072-6691