High Solid and Low Cellulase Enzymatic Hydrolysis of Cardoon Stems Pretreated by Acidified γ-Valerolactone/Water Solution

Lignocellulosic biomass is a nonedible matrix that can be efficiently exploited as feedstock in an integrated biorefinery after a proper pretreatment. An organosolv pretreatment using an acidified γ-valerolactone (GVL)/water solution was proposed to improve the cellulose enrichment and enzymatic sac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2022-04, Vol.15 (7), p.2600
Hauptverfasser: Fabbrizi, Giacomo, Giannoni, Tommaso, Lorenzi, Leonardo, Nicolini, Andrea, Iodice, Paola, Coccia, Valentina, Cavalaglio, Gianluca, Gelosia, Mattia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lignocellulosic biomass is a nonedible matrix that can be efficiently exploited as feedstock in an integrated biorefinery after a proper pretreatment. An organosolv pretreatment using an acidified γ-valerolactone (GVL)/water solution was proposed to improve the cellulose enrichment and enzymatic saccharification of cardoon (Cynara cardunculus L.) stems. At the optimal pretreatment condition (140 °C, 0.6 GVL/water, and 2.24% H2SO4), xylan was efficiently removed from the cardoon, and up to 50% of its content was recovered in the aqueous fraction, while 86% of the cellulose was retained in the solid fraction. The resulting cardoon pulp showed a cellulose content of 91.5% and an enzymatic digestibility of 100%. An overall glucose production of 37.17 g/100 g raw material (90% theoretical maximum) was obtained using high solid loading (20% w/w) and a high enzyme dosage (60 FPU/g cellulose). At a low enzyme dosage, glucose concentrations of 169 g/L and 210 g/L were achieved using 10 FPU/g cellulose and 20 FPU/g cellulose, respectively. Therefore, an organosolv pretreatment can be an effective process for producing cellulose-enriched pulp with enhanced enzymatic digestibility from cardoon stems, providing a promising option for green lignocellulosic biorefineries that aim to produce high concentrations of glucose with low cellulase addition.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15072600