Multispecies colonisation and surface erosion on A106 GB industry-finished steel used in heat exchangers

Multispecies bacterial attachment to carbon steel surfaces is not fully understood; for example, as to why the attachment of certain bacteria influences corrosion. In this study, finished steel, A 106 GB was exposed to a mixed bacterial culture in a batch reactor system at a constant temperature of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology, biotechnological equipment biotechnological equipment, 2024-03, Vol.38 (1)
Hauptverfasser: Prithiraj, Alicia, Tichapondwa, Shepherd, Nel, Jackie, Chirwa, Evans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multispecies bacterial attachment to carbon steel surfaces is not fully understood; for example, as to why the attachment of certain bacteria influences corrosion. In this study, finished steel, A 106 GB was exposed to a mixed bacterial culture in a batch reactor system at a constant temperature of 35 °C to evaluate the corrosion rate with and without bacterial influence. Cultures collected from the cooling tower site were exposed to coupons and were grown in a batch reactor. Atomic force microscopy (AFM) was used to obtain roughness parameters. Surface morphology and colonisation patterns were observed by scanning electron microscopy (SEM). 16S rDNA sequencing indicated predominance of Pseudomonas sp. and Clostridium sp. on the rough surfaces. Cell colonisation of surfaces showed no time-related differences, with differences observed on surface roughness parameters. Intergranular and uniform corrosion was observed. The smooth finished steel surface performed best in resisting corrosion.
ISSN:1310-2818
1314-3530
DOI:10.1080/13102818.2024.2326292