Correlation-Based Out-of-Plane Displacement Measurement for Optical Fiber Material
Due to the monitoring requirement of optical fiber industrial production, an out-of-plane displacement measurement method is proposed. Firstly, the in-plane displacements between two consecutive images, captured through a microscope with a CCD camera, are estimated by the Digital Speckle Correlation...
Gespeichert in:
Veröffentlicht in: | Photonics 2021, Vol.8 (9), p.348 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the monitoring requirement of optical fiber industrial production, an out-of-plane displacement measurement method is proposed. Firstly, the in-plane displacements between two consecutive images, captured through a microscope with a CCD camera, are estimated by the Digital Speckle Correlation Method (DSCM). Subsequently, the out-of-plane displacement of optical fiber material can be obtained by the wedge model. Finally, the effectiveness of the method is verified experimentally by comparing the measurement data of routine practice with its theoretical values. Simulation and experimental results indicate that the absolute errors and the relative errors of the measurement by the optical microscope with a magnification of 50× are less than ±0.2 μm and 5%, respectively. The new method only needs two images obtained by the microscopic imaging system with a single camera to accomplish the measurement, which can significantly reduce the measurement time and complexity of the arrangement. Further, the method needs neither frequency domain conversion nor phase unwrapping operation, therefore, it is especially suitable for dynamic out-of-plane displacement measurement. The proposed method has been applied to the industrial uniformity and micro–nano-scale deformation monitoring of optical fiber image transmission materials. |
---|---|
ISSN: | 2304-6732 2304-6732 |
DOI: | 10.3390/photonics8090348 |