Integration of UH SUH, HEC-RAS, and GIS in Flood Mitigation with Flood Forecasting and Early Warning System for Gilireng Watershed, Indonesia

A flood forecasting and early warning system is critical for rivers that have a large flood potential, one of which is the Gilireng watershed, which floods every year and causes many losses in Wajo Regency, Indonesia. This research also introduces an integration model between UH SUH and HEC-RAS in f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth (Basel, Switzerland) Switzerland), 2024-09, Vol.5 (3), p.274-293
Hauptverfasser: Mustamin, Muhammad Rifaldi, Maricar, Farouk, Lopa, Rita Tahir, Karamma, Riswal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A flood forecasting and early warning system is critical for rivers that have a large flood potential, one of which is the Gilireng watershed, which floods every year and causes many losses in Wajo Regency, Indonesia. This research also introduces an integration model between UH SUH and HEC-RAS in flood impact analysis, as a reference for flood forecasting and early warning systems in anticipating the timing and occurrence of floods, as well as GIS in the spatial modeling of flood-prone areas. Broadly speaking, this research is divided into four stages, namely, a flood hydrological analysis using UH SUH, flood hydraulic tracing using a 2D HEC-RAS numerical model, the spatial modeling of flood-prone areas using GIS, and the preparation of flood forecasting and early warning systems. The results of the analysis of the flood forecasting and early warning systems obtained the flood travel time and critical time at the observation point, the total time required from the upstream observation point to level 3 at Gilireng Dam for 1 h 35 min, Mamminasae Bridge for 4 h 35 min, and Akkotengeng Bridge for 8 h 40 min. This is enough time for people living in flood-prone areas to evacuate to the 15 recommended evacuation centers.
ISSN:2673-4834
2673-4834
DOI:10.3390/earth5030015