Electrochemical Performance of Layer-Structured Ni0.8Co0.1Mn0.1O2 Cathode Active Materials Synthesized by Carbonate Co-Precipitation

The layered Ni-rich NiCoMn (NCM)-based cathode active material Li[NixCo(1−x)/2Mn(1−x)/2]O2 (x ≥ 0.6) has the advantages of high energy density and price competitiveness over an LiCoO2-based material. Additionally, NCM is beneficial in terms of its increasing reversible discharge capacity with the in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2022-10, Vol.12 (20), p.3610
Hauptverfasser: Park, Byung Hyun, Kim, Taeseong, Park, Hyerim, Sohn, Youngku, Shin, Jongmin, Kang, Misook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The layered Ni-rich NiCoMn (NCM)-based cathode active material Li[NixCo(1−x)/2Mn(1−x)/2]O2 (x ≥ 0.6) has the advantages of high energy density and price competitiveness over an LiCoO2-based material. Additionally, NCM is beneficial in terms of its increasing reversible discharge capacity with the increase in Ni content; however, stable electrochemical performance has not been readily achieved because of the cation mixing that occurs during its synthesis. In this study, various layer-structured Li1.0[Ni0.8Co0.1Mn0.1]O2 materials were synthesized, and their electrochemical performances were investigated. A NiCoMnCO3 precursor, prepared using carbonate co-precipitation with Li2CO3 as the lithium source and having a sintering temperature of 850 °C, sintering time of 25 h, and metal to Li molar ratio of 1.00–1.05 were found to be the optimal parameters/conditions for the preparation of Li1.0[Ni0.8Co0.1Mn0.1]O2. The material exhibited a discharge capacity of 160 mAhg−1 and capacity recovery rate of 95.56% (from a 5.0–0.1 C-rate).
ISSN:2079-4991
2079-4991
DOI:10.3390/nano12203610