Exploring Angiotensin II and Oxidative Stress in Radiation-Induced Cataract Formation: Potential for Therapeutic Intervention

Radiation-induced cataracts (RICs) represent a significant public health challenge, particularly impacting individuals exposed to ionizing radiation (IR) through medical treatments, occupational settings, and environmental factors. Effective therapeutic strategies require a deep understanding of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2024-10, Vol.13 (10), p.1207
Hauptverfasser: Kumar, Vidya P, Kong, Yali, Dolland, Riana, Brown, Sandra R, Wang, Kan, Dolland, Damian, Mu, David, Brown, Milton L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Radiation-induced cataracts (RICs) represent a significant public health challenge, particularly impacting individuals exposed to ionizing radiation (IR) through medical treatments, occupational settings, and environmental factors. Effective therapeutic strategies require a deep understanding of the mechanisms underlying RIC formation (RICF). This study investigates the roles of angiotensin II (Ang II) and oxidative stress in RIC development, with a focus on their combined effects on lens transparency and cellular function. Key mechanisms include the generation of reactive oxygen species (ROS) and oxidative damage to lens proteins and lipids, as well as the impact of Ang II on inflammatory responses and cellular apoptosis. While the generation of ROS from water radiolysis is well established, the impact of Ang II on RICs is less understood. Ang II intensifies oxidative stress by activating type 1 receptors (AT1Rs) on lens epithelial cells, resulting in increased ROS production and inflammatory responses. This oxidative damage leads to protein aggregation, lipid peroxidation, and apoptosis, ultimately compromising lens transparency and contributing to cataract formation. Recent studies highlight Ang II's dual role in promoting both oxidative stress and inflammation, which accelerates cataract development. RICs pose a substantial public health concern due to their widespread prevalence and impact on quality of life. Targeting Ang II signaling and oxidative stress simultaneously could represent a promising therapeutic approach. Continued research is necessary to validate these strategies and explore their efficacy in preventing or reversing RIC development.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox13101207