Single Turnover of Transient of Reactants Supports a Complex Interplay of Conformational States in the Mode of Action of Mycobacterium tuberculosis Enoyl Reductase
The enoyl reductase from Mycobacterium tuberculosis (MtInhA) was shown to be a major target for isoniazid, the most prescribed first-line anti-tuberculosis agent. The MtInhA (EC 1.3.1.9) protein catalyzes the hydride transfer from the 4S hydrogen of β-NADH to carbon-3 of long-chain 2-trans-enoyl thi...
Gespeichert in:
Veröffentlicht in: | Future pharmacology 2023-06, Vol.3 (2), p.379-391 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The enoyl reductase from Mycobacterium tuberculosis (MtInhA) was shown to be a major target for isoniazid, the most prescribed first-line anti-tuberculosis agent. The MtInhA (EC 1.3.1.9) protein catalyzes the hydride transfer from the 4S hydrogen of β-NADH to carbon-3 of long-chain 2-trans-enoyl thioester substrates (enoyl-ACP or enoyl-CoA) to yield NAD+ and acyl-ACP or acyl-CoA products. The latter are the long carbon chains of the meromycolate branch of mycolic acids, which are high-molecular-weight α-alkyl, β-hydroxy fatty acids of the mycobacterial cell wall. Here, stopped-flow measurements under single-turnover experimental conditions are presented for the study of the transient of reactants. Single-turnover experiments at various enzyme active sites were carried out. These studies suggested isomerization of the MtInhA:NADH binary complex in pre-incubation and positive cooperativity that depends on the number of enzyme active sites occupied by the 2-trans-dodecenoyl-CoA (DD-CoA) substrate. Stopped-flow results for burst analysis indicate that product release does not contribute to the rate-limiting step of the MtInhA-catalyzed chemical reaction. The bearings that the results presented herein have on function-based anti-tuberculosis drug design are discussed. |
---|---|
ISSN: | 2673-9879 2673-9879 |
DOI: | 10.3390/futurepharmacol3020023 |