Design of a tailor‐made platform for syngas bioconversion into polyhydroxybutyrate

Summary Biodegradable polymers such as polyhydroxybutyrate (PHB) are part of the emerging portfolio of renewable materials, which are addressing the issue of plastic waste. Syngas, as a cheap, renewable and sustainable resource that can be obtained from biomass or waste, is viewed as an excellent fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial Biotechnology 2017-11, Vol.10 (6), p.1300-1301
Hauptverfasser: Narancic, Tanja, O'Connor, Kevin E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Biodegradable polymers such as polyhydroxybutyrate (PHB) are part of the emerging portfolio of renewable materials, which are addressing the issue of plastic waste. Syngas, as a cheap, renewable and sustainable resource that can be obtained from biomass or waste, is viewed as an excellent feedstock for different bioprocesses, including syngas to PHB bioconversion. However, due to the hazardous nature of syngas, it is of utmost importance to consider safety aspects of the process. This recently developed tailor‐made platform for safe syngas fermentation and PHB production addresses safety aspects and demonstrates the importance of robust online and in‐line analytical tools allowing for monitoring and controlling of this bioprocess. Biodegradable polymers such as polyhydroxybutyrate (PHB) are part of the emerging portfolio of renewable materials, which are addressing the issue of plastic waste. Syngas, as a cheap, renewable and sustainable resource that can be obtained from biomass or waste, is viewed as an excellent feedstock for different bioprocesses, including syngas to PHB bioconversion. However, due to the hazardous nature of syngas, it is of utmost importance to consider safety aspects of the process. This recently developed tailor‐made platform for safe syngas fermentation and PHB production addresses safety aspects and demonstrates the importance of robust on‐line and in‐line analytical tools allowing for monitoring and controlling of this bioprocess.
ISSN:1751-7915
1751-7915
DOI:10.1111/1751-7915.12847