SiO2-SnO2:Er3+ Glass-Ceramic Monoliths

The development of efficient luminescent systems, such as microcavities, solid-state lasers, integrated optical amplifiers, and optical sensors is the main topic in glass photonics. The building blocks of these systems are glass-ceramics activated by rare-earth ions because they exhibit specific mor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2018-08, Vol.8 (8), p.1335
Hauptverfasser: Tran, Lam, Massella, Damiano, Zur, Lidia, Chiasera, Alessandro, Varas, Stefano, Armellini, Cristina, Righini, Giancarlo, Lukowiak, Anna, Zonta, Daniele, Ferrari, Maurizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of efficient luminescent systems, such as microcavities, solid-state lasers, integrated optical amplifiers, and optical sensors is the main topic in glass photonics. The building blocks of these systems are glass-ceramics activated by rare-earth ions because they exhibit specific morphologic, structural, and spectroscopic properties. Among various materials that could be used as nanocrystals to be imbedded in a silica matrix, tin dioxide presents some interesting peculiarities, e.g., the presence of tin dioxide nanocrystals allows an increase in both solubility and emission of rare-earth ions. Here, we focus our attention on Er3+—doped silica—tin dioxide photonic glass-ceramics fabricated by a sol-gel route. Although the SiO2-SnO2:Er3+ could be fabricated in different forms, such as thin films, monoliths, and planar waveguides, we herein limit ourselves to the monoliths. The effective role of tin dioxide as a luminescence sensitizer for Er3+ ions is confirmed by spectroscopic measurements and detailed fabrication protocols are discussed.
ISSN:2076-3417
2076-3417
DOI:10.3390/app8081335