Existence of multiple positive solutions for a truncated Kirchhoff-type system involving weight functions and concave–convex nonlinearities

We consider the combined effect of concave–convex nonlinearities on the number of solutions for an indefinite truncated Kirchhoff-type system involving the weight functions. When α + β < 4 , since the concave-convex nonlinearities do not satisfy the mountain pass geometry, it is difficult to obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2020-02, Vol.2020 (1), p.1-13, Article 88
Hauptverfasser: Lou, Qingjun, Qin, Yupeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the combined effect of concave–convex nonlinearities on the number of solutions for an indefinite truncated Kirchhoff-type system involving the weight functions. When α + β < 4 , since the concave-convex nonlinearities do not satisfy the mountain pass geometry, it is difficult to obtain a bounded Palais–Smale sequence by the usual mountain pass theorem. To overcome the problem, we properly introduce a method of Nehari manifold and then establish the existence of multiple positive solutions when the pair of the parameters is under a certain range.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-02556-6