Existence of multiple positive solutions for a truncated Kirchhoff-type system involving weight functions and concave–convex nonlinearities
We consider the combined effect of concave–convex nonlinearities on the number of solutions for an indefinite truncated Kirchhoff-type system involving the weight functions. When α + β < 4 , since the concave-convex nonlinearities do not satisfy the mountain pass geometry, it is difficult to obta...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2020-02, Vol.2020 (1), p.1-13, Article 88 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the combined effect of concave–convex nonlinearities on the number of solutions for an indefinite truncated Kirchhoff-type system involving the weight functions. When
α
+
β
<
4
, since the concave-convex nonlinearities do not satisfy the mountain pass geometry, it is difficult to obtain a bounded Palais–Smale sequence by the usual mountain pass theorem. To overcome the problem, we properly introduce a method of Nehari manifold and then establish the existence of multiple positive solutions when the pair of the parameters is under a certain range. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-020-02556-6 |