Dynamical phases in a ``multifractal'' Rosenzweig-Porter model
We consider the static and the dynamical phases in a Rosenzweig-Porter (RP) random matrix ensemble with a distribution of off-diagonal matrix elements of the form of the large-deviation ansatz. We present a general theory of survival probability in such a random-matrix model and show that the averag...
Gespeichert in:
Veröffentlicht in: | SciPost physics 2021-08, Vol.11 (2), p.045, Article 045 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the static and the dynamical phases in a
Rosenzweig-Porter (RP) random matrix ensemble with a distribution of
off-diagonal matrix elements of the form of the large-deviation ansatz.
We present a general theory of survival probability in such a
random-matrix model and show that the averaged survival probability may decay
with time as a simple exponent, as a stretch-exponent and as a power-law
or slower. Correspondingly, we identify the exponential, the
stretch-exponential and the frozen-dynamics phases. As an example, we
consider the mapping of the Anderson localization model on Random
Regular Graph onto the RP model and find exact values of the
stretch-exponent
\kappa
κ
in the thermodynamic limit. As another example we consider the
logarithmically-normal RP random matrix ensemble and find analytically
its phase diagram and the exponent
\kappa
κ
.
Our theory allows to describe analytically the finite-size
multifractality and to compute the critical length with the exponent
\nu_{MF}=1
ν
M
F
=
1
associated with it. |
---|---|
ISSN: | 2542-4653 2542-4653 |
DOI: | 10.21468/SciPostPhys.11.2.045 |