BvgR is important for virulence-related phenotypes in Bordetella bronchiseptica

is a pathogenic bacterium that causes respiratory infections in mammals. Adhesins, toxins, and secretion systems necessary for infection are regulated by the two-component system BvgAS. When the BvgAS system is inactive, there is no transcription of virulence-activated genes, and virulence-repressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology spectrum 2024-11, Vol.12 (11), p.e0079424
Hauptverfasser: Gutierrez, Maria de la Paz, Damron, F Heath, Sisti, Federico, Fernández, Julieta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:is a pathogenic bacterium that causes respiratory infections in mammals. Adhesins, toxins, and secretion systems necessary for infection are regulated by the two-component system BvgAS. When the BvgAS system is inactive, there is no transcription of virulence-activated genes, and virulence-repressed genes ( ) are expressed. The regulation of some in is dependent upon the virulence-activated gene . Although having a regulatory role, no DNA-binding domain is described for BvgR. Instead, it contains an EAL domain, usually found in cyclic-di-GMP (c-di-GMP)-specific phosphodiesterases. c-di-GMP is a bacterial second messenger that regulates multiple phenotypes in bacteria, including . The current study aimed to deepen our knowledge about BvgR. We employed RNA-seq analysis to define the BvgR regulon, and then we investigated the phenotypes in which BvgR regulation might be involved such as biofilm formation, cytotoxicity, and virulence. Our result revealed that BvgR inhibits biofilm formation and flagellin expression in virulent phase. Although BvgR has long been considered a repressor protein, our results show that it also upregulates almost 100 genes. This regulation is likely indirect, as BvgR lacks a DNA-binding domain. Notably, among the upregulated genes, we identified 15 associated with the type three secretion system. Consistent with these findings, a strain deficient in was less cytotoxic than the wild-type strain, elicited a milder immune response, and was less able to persist in the lower respiratory tract of mice.IMPORTANCE is a harmful bacterium responsible for respiratory infections in mammals. Its ability to cause disease is tightly regulated by a system called BvgAS. In this study, we focused on understanding the role of a specific gene called in regulating 's virulence factors. Our findings revealed that BvgR, previously thought to primarily repress gene expression, actually plays a complex role in both activating and inhibiting various genes involved in bacterial virulence. This newfound understanding sheds light on the intricate mechanisms underlying 's ability to cause infections, providing valuable insights for developing strategies to combat these infections in humans and animals.
ISSN:2165-0497
2165-0497
DOI:10.1128/spectrum.00794-24