An Automatic Processing Chain for Near Real-Time Mapping of Burned Forest Areas Using Sentinel-2 Data

A fully automated processing chain for near real-time mapping of burned forest areas using Sentinel-2 multispectral data is presented. The acronym AUTOBAM (AUTOmatic Burned Areas Mapper) is used to denote it. AUTOBAM is conceived to work daily at a national scale for the Italian territory to support...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2020-02, Vol.12 (4), p.674
Hauptverfasser: Pulvirenti, Luca, Squicciarino, Giuseppe, Fiori, Elisabetta, Fiorucci, Paolo, Ferraris, Luca, Negro, Dario, Gollini, Andrea, Severino, Massimiliano, Puca, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A fully automated processing chain for near real-time mapping of burned forest areas using Sentinel-2 multispectral data is presented. The acronym AUTOBAM (AUTOmatic Burned Areas Mapper) is used to denote it. AUTOBAM is conceived to work daily at a national scale for the Italian territory to support the Italian Civil Protection Department in the management of one of the major natural hazards, which affects the territory. The processing chain includes a Sentinel-2 data procurement component, an image processing algorithm, and the delivery of the map to the end-user. The data procurement component searches every day for the most updated products into different archives. The image processing part represents the core of AUTOBAM and implements an algorithm for burned forest areas mapping that uses, as fundamental parameters, the relativized form of the delta normalized burn ratio and the normalized difference vegetation index. The minimum mapping unit is 1 ha. The algorithm implemented in the image processing block is validated off-line using maps of burned areas produced by the Copernicus Emergency Management Service. The results of the validation shows an overall accuracy (considering the classes of burned and unburned areas) larger than 95% and a kappa coefficient larger than 80%. For what concerns the class of burned areas, the commission error is around 1%−3%, except for one case where it reaches 25%, while the omission error ranges between 6% and 25%.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12040674