Training Stiffness perception: Knowledge of results and modality effects

Perception of compliant objects demands integration of haptic and visual position information with force information. Multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. In this study we explored humans' impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIO web of conferences 2011-01, Vol.1, p.87
Hauptverfasser: Teodorescu, Kinneret, Gopher, Daniel, Korman, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Perception of compliant objects demands integration of haptic and visual position information with force information. Multisensory interactions are ubiquitous in perception, even at early processing stages, and thus can potentially play a role in learning. In this study we explored humans' improvement on uni-sensory stiffness discrimination as a function of different sensory conditions and immediate knowledge of results (KR) during training. Two by two design was used: subjects were trained over two days on stiffness discrimination task with either matched visual-tactile, or tactile only stimuli and either with or without immediate feedback on their performance during training trials. Training resulted in both immediate but also latent, overnight learning in the proportion of correctly discriminated pairs of targets (PC), in all groups. Discrimination decision time (DT) gains were obtained only during practice, while between sessions partial deterioration was evident. Affordance of visual information during training blocks resulted in higher PC during training blocks, but lower PC in the haptic-only retests. This finding challenges the notion that long-term unisensory learning mechanisms operate optimally under multisensory training conditions, at least for the combination of the visual and haptic modalities. We didn’t find evidence that information feedback during training enhances discrimination ability in terms of PC. However, we found transient within-session effects of KR and visual-haptic trainings on DT: while visualhaptic training resulted in slower responses, KR training induced faster responses.
ISSN:2117-4458
2273-1709
2117-4458
DOI:10.1051/bioconf/20110100087