Memory and superposition in a superspin glass

The non-equilibrium dynamics of the superspin glass state of a dense assembly of ~ 2 nm MnFe 2 O 4 nanoparticles was investigated by means of magnetization, ac susceptibility and Mössbauer spectroscopy measurements and compared to the results of Monte Carlo simulations for a mesoscopic model that in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-04, Vol.11 (1), p.7743-7743, Article 7743
Hauptverfasser: Peddis, D., Trohidou, K. N., Vasilakaki, M., Margaris, G., Bellusci, M., Varsano, F., Hudl, M., Yaacoub, N., Fiorani, D., Nordblad, P., Mathieu, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The non-equilibrium dynamics of the superspin glass state of a dense assembly of ~ 2 nm MnFe 2 O 4 nanoparticles was investigated by means of magnetization, ac susceptibility and Mössbauer spectroscopy measurements and compared to the results of Monte Carlo simulations for a mesoscopic model that includes particles morphology and interparticle interactions. The zero-field cooled (ZFC), thermoremanent (TRM), and isothermal remanent magnetization (IRM) were recorded after specific cooling protocols and compared to those of archetypal spin glasses and their dimensionality. The system is found to display glassy magnetic features. We illustrate in detail, by a number of experiments, the dynamical properties of the low-temperature superspin glass phase. We observe that these glassy features are quite similar to those of atomic spin glasses. Some differences are observed, and interestingly, the non-atomic nature of the superspin glass is also reflected by an observed superspin dimensionality crossover. Monte Carlo simulations—that explicitly take into account core and surface contributions to the magnetic properties of these ultrasmall nanoparticles in direct contact, as well as interparticle interactions—evidence effects of the interplay between (intraparticle) core/surface exchange coupling and (interparticle) dipolar and exchange interactions.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-87345-1