Protective immune response induced by Leghorn male hepatoma cell-adapted fowl adenovirus-4

Fowl adenovirus-4 (FAdV-4) is a highly contagious virus that causes acute and lethal hepatitis. It leads to substantial economic losses in the poultry industry. Among the structural proteins of FAdV-4, hexon and fiber2 are associated with immunopathogenesis. A frameshift mutation was generated in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon 2024-02, Vol.10 (3), p.e25366-e25366, Article e25366
Hauptverfasser: Lee, Rangyeon, Sung, Haan Woo, Cheong, Hee-Tae, Park, Jeongho
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fowl adenovirus-4 (FAdV-4) is a highly contagious virus that causes acute and lethal hepatitis. It leads to substantial economic losses in the poultry industry. Among the structural proteins of FAdV-4, hexon and fiber2 are associated with immunopathogenesis. A frameshift mutation was generated in the fiber2 protein by seral passages in the Leghorn male hepatoma (LMH) cell line. Immunization using the attenuated virus (80 times passaged) before the virulent FAdV-4 challenge protected hosts from the infection and cleared the invading virus. In immunized animals, activated CD4+ and CD8+ T cell populations were larger during the FAdV-4 challenge. The change in the B cell population was similar. Myeloid cells were highly increased during FAdV-4 infection after the immunization, but the immunization inhibited the expansion in both liver and spleen. The functional gene expression for immune modulation was strongly associated with immune cell changes in the liver, however, this association was not strong in the spleen. The present findings imply that genetic modification by cellular adaptation regulates immune cell phenotype and function in the target organ. In addition, we suggest the attenuated virus as a protective strategy against the novel FAdV-4 strains.
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e25366