SiC Detector Thickness Optimization for Enhanced Response Variability
Neutron spectroscopy is a crucial point in several nuclear applications. Accurately measuring fast neutron energy distributions in high-flux conditions reveals a significant technology gap, hindering the acquisition of precise energy fluence distributions. This project investigates the potential of...
Gespeichert in:
Veröffentlicht in: | EPJ Web Conf 2024, Vol.302, p.14002 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neutron spectroscopy is a crucial point in several nuclear applications. Accurately measuring fast neutron energy distributions in high-flux conditions reveals a significant technology gap, hindering the acquisition of precise energy fluence distributions. This project investigates the potential of machine learning to bridge this gap, focusing on neutron energies from 100 keV to 20 MeV and fluence rates from 10 10 n / cm 2 s to 10 12 n / cm 2 s using solid detectors such as Silicon Carbide (SiC) and Chemical Vapor Deposition (CVD) diamonds. This paper details the simulation design phase of our project, emphasizing the exploration of optimal SiC solid detector thickness to introduce crucial variability for machine learning training. |
---|---|
ISSN: | 2100-014X 2100-014X |
DOI: | 10.1051/epjconf/202430214002 |