SiC Detector Thickness Optimization for Enhanced Response Variability

Neutron spectroscopy is a crucial point in several nuclear applications. Accurately measuring fast neutron energy distributions in high-flux conditions reveals a significant technology gap, hindering the acquisition of precise energy fluence distributions. This project investigates the potential of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web Conf 2024, Vol.302, p.14002
Hauptverfasser: Belfiore, Enrica, Antoni, Rodolphe, Ben Mosbah, Mehdi, Allinei, Pierre-Guy, Potiron, Quentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neutron spectroscopy is a crucial point in several nuclear applications. Accurately measuring fast neutron energy distributions in high-flux conditions reveals a significant technology gap, hindering the acquisition of precise energy fluence distributions. This project investigates the potential of machine learning to bridge this gap, focusing on neutron energies from 100 keV to 20 MeV and fluence rates from 10 10 n / cm 2 s to 10 12 n / cm 2 s using solid detectors such as Silicon Carbide (SiC) and Chemical Vapor Deposition (CVD) diamonds. This paper details the simulation design phase of our project, emphasizing the exploration of optimal SiC solid detector thickness to introduce crucial variability for machine learning training.
ISSN:2100-014X
2100-014X
DOI:10.1051/epjconf/202430214002